Webnucleo Technical Report: libstatmech

Tianhong Yu, Bradley S. Meyer
April 19, 2012

This technical report describes some details of calculations in the libstatmech
module.

1 Introduction

libstatmech is a library of C codes for computing the thermodynamics of fermion
and boson gases. It is built on top of libxml, the GNOME C xml toolkit. Users
can create fermions and bosons and calculate their thermodynamic quantities
numerically with either default integrands (fully relativistic, non-interacting
particles) or user-supplied ones or with user-defined functions. Users can also
define their own thermodynamics quantities as functions or integrands. A well-
documented API allows users to incorporate libstatmech into their own codes,
and examples in the libstatmech distribution demonstrate the API.

2 Fermions and Bosons

Fermions and bosons are stored as Libstatmech__Fermion and Libstatmech__Boson
structures, respectively in libstatmech. To create a fermion or boson, the user
must supply the particle’s name, its rest mass in MeV, its multiplicity (usu-
ally 2J + 1, where J is the particle’s spin), and its charge (in units of the
proton’s charge). When a fermion or boson is created, it automatically has
attached to it four thermodynamic quantities, namely, the number density,
the pressure, the energy density, and the entropy density. These quantities
are computed in cgs units. Once a fermion or boson is created, a user may
compute one of the four thermodynamic quantities by the API routine Libstat-
mech__Fermion__computeQuantity() or Libstatmech__Boson__computeQuantity/().
These routines will compute the various quantities by numerical integration of
the default integrands, which are those for fully relativistic, non-interacting par-
ticles (see §3|for the definition of these integrals). The user may also invert the
number density integrand to compute the chemical potential. The four standard
quantities are identified by the strings “number density”, “pressure”, “energy
density”, and “entropy density”, which may also be set by the defined pa-
rameters S NUMBER_DENSITY, S_ PRESSURE, S ENERGY_DENSITY, and
S_ENTROPY_DENSITY.

3 Default Integrands

This section presents the default integrands used in libstatmech. They are
for non-interacting, fully relativistic fermions and bosons. The key parameters
are m, the particle rest mass, g, the particle multiplicity, 7', the Temperature,
h, Planck’s constant divided by 2w, ¢, the speed of light in vacuum, and k,
Boltzmann’s constant. We use GSL defined values of these constants (see the
GSL documentation) in all cases. We choose the cgs system of units. The other
parameters are o and 7. These are defined as follows:

_p—me®

kT kT
where p is the full chemical potential and p’ is the chemical potential less the
particle’s rest mass energy, and

(07

Ly

3.1 Fermions

In deriving our integrands, we considered fermions and anti-fermions and as-
sumed them to be in annihilation equilibrium with the photon field. Thus, for
example, we assumed the reaction e™ + e~ & ~ + v, where the v represents a
photon. Because the photon has zero chemical potential, the equilibrium implies

Het = —He—-
We may then write in terms of chemical potentials less the rest mass:

r / 2
ply = —pl- —2mc?,

where m is the electron rest mass. On division by k7', this then becomes
Qet = —Qe- — 27.
The resulting integrands are the following:

Number Density:

2)3

Ne+e—

(mc?)?g / o 5 1 1
S VoA / 2 —
212(he)3y3 Jo () Ve + 2w l+exp(z —a) 1+exp(z+2y+a)
We note that in the special case that the fermion rest mass is zero, the default
integrand for the number density may be integrated directly. The result is

(kT)*g <7T3 a3>

B 272 (he)3 ?a—’_ 3

Nete-

As of version 0.5, libstatmech uses this result in default calculations of the
number density and chemical potential when the fermion rest mass is zero.

Pressure:

2\4 0o
P, = m / (x+7)vV2? + 2yz {In(1 + expla — z]) + In(1 + exp[—x — 2y — o))} dz
0
Energy Density:
(m02)4g /OO 2 /.2 1 1
Cete 212 (he)3v* J, (@+9)"Va? + 27w 1+ exp(z —) + 1+ exp(z+ 27+ a) v
Entropy Density:
L N SN
ete- — 271’2(71,0)3’}/3 0 Fy fy
T—a T+ 27+«
———— +1In|l - In[1 —x — 2y —
1+ exp(z —a) [l +expla —)]+ Inl +exp(—a = 2y —)] + 1+ exp(z + 27 +)
3.2 Bosons

In the absence of evidence for a conserved boson number, we neglected the
anti-bosons. The resulting integrands are the following:

Number Density:

_ (kT)3g /°° (z+7)va? + 2yz i
3
0

"= 272 (he) exp(z —a) —1
Pressure:
pP— _w /Oo(q: +)V 22 + 2yzin[l — exp(a —)] dx
27T2(fLC)3 0

Energy Density:

~ (KT)%g /°° (x+7)2/a2? + 2y e
3
0

‘T o (he) exp(z —a) —1

Entropy Density:

3 e} oa—T
o (’“T)QR)/O (x+v)\/W{ln[l—exp(a—w)]+)_l}dx

272 (he) exp(z — «

4 User-Supplied Functions and Integrands for
Thermodynamic Quantities

If a user wishes to use a function or an intergrand other than the default version
to compute a thermodynamic quantity, he or she must supply those. To supply
a function for a thermodynamic quantity of a fermion, the user writes a routine
with the prototype

double

fermion_function(
Libstatmech__Fermion *p_fermion,
double d_T,
double d_mukT,
void *p_user_data

)

Here, p_fermion is a pointer to a libstatmech fermion structure, d_T is the
temperature in K, d_mukT is the p'/kT, the chemical potential (less the rest
mass, that is, ¢/ = u — mc?, where p is the full chemical potential) divided
by kT, where k is Boltzmann’s constant, and p_user_data is a pointer to a
user-defined structure carrying extra data into the routine. The user’s routine
need not be named fermion_function. Analogously, a user-supplied function
for a boson thermodynamic quantity has the prototype

double

boson_function(
Libstatmech__Boson *p_boson,
double d_T,
double d_mukT,
void *p_user_data

)

For both the fermion and boson function, the user’s routine must return the
thermodynamic quantity for the input temperature, u/kT, and other user data.

A user may also supply an integrand for a thermodynamic quantity. Here
the respective prototypes are

double

fermion_integrand(
Libstatmech__Fermion *p_fermion,
double d_x,
double d_T,
double d_mukT,
void *p_user_data

and

double

boson_integrand (
Libstatmech__Boson *p_boson,
double d_x,
double d_T,
double d_mukT,
void *p_user_data

)

The input parameters are the same as for the functions. The additional param-
eter d_x is the integration variable.
Once the user has written an appropriate function and integrand, he or she
updates them for the fermion or boson. For example, to update the pressure for a
fermion p_fermion with function my_pressure_function and my_pressure_integrand,
the user calls

Libstatmech__Fermion__updateQuantity(
p_fermion,
S_PRESSURE,
(Libstatmech__Fermion__Function) my_pressure_function,
(Libstatmech__Fermion__Integrand) my_pressure_integrand

)

Now when the user calls Libstatmech__Fermion__computeQuantity for p_fermion
and for the pressure, libstatmech will compute the pressure by first evaluating
my_pressure_function for the input temperature, chemical potential, and other
data and will add to it the result of the numerical integration of the integrand
my_pressure_integrand. If either the function or integrand is set to NULL, it
will not be used in the calculation of the quantity. If the integrand is set to
DEFAULT_INTEGRAND, the integrand will be reset to the default for that
quantity.

The user may also define his or her own quantity (other than one of the four
standard ones). To do so, the user writes the appropriate function and integrand
and then sets the quantity for the fermion or boson with the updateQuan-
tity() routine but with the string giving the quantity name set appropriately.
The quantity is then computed by calling computeQuantity with that quan-
tity name. For example, suppose we have a fermion pointed to by p_fermion.
Now we write a Libstatmech__Fermion__Function my_enthalpy_function and a
Libstatmech__Fermion__Integrand my_enthalpy_integrand that follow the appro-
priate prototypes. To compute the enthalpy at a temperature of 10° K and
' /kT = —23 with no extra data, we set the quantity enthalpy and then com-
pute it:

Libstatmech__Fermion__updateQuantity(
p_fermion,
"enthalpy",
(Libstatmech__Fermion__Function) my_enthalpy_function,

(Libstatmech__Fermion__Integrand) my_enthalpy_integrand

)

fprintf(
stdout,
"The enthalpy density is %g (ergs/cc)\n",
Libstatmech__Fermion__computeQuantity(
p_fermion,
"enthalpy",
1000.,
-23.,
NULL
)

Examples in the libstatmech distribution further demonstrate how to supply
user-defined functions and integrands and how to apply them to thermodynamic
quantities.

5 Numerical Calculation of the Integrals

The integration variable for quantity integrands is, in effect, the magnitude of
the particle momentum converted to energy in units of £7'; thus, the full range
of integration is from zero to co. Users may reset the integral lower limit with
the updatelntegralLowerLimit API routines. The integrals are computed with
Gnu Scientific Library (GSL) routines. It is efficient, when the p//kT > 0, to
integrate from the lower limit to u’/kT and then from p'/kT to co. The former
integral is done with the GSL routine gsl_integration_qags while the latter
is done with gsl integration_gagiu. When p//kT < 0, the full integration is
done with gsl_integration_qagiu.

Numerical integration of a quantity continues until the approximation to the
integral satisfies the absolute tolerance €,s and relative tolerance €,.;. By de-
fault these are both 10~® but the user may update them with the updateQuan-
tityIntegral Accuracy() API routines. The default values provide an excellent
compromise between accuracy and speed, and most users should probably not
need to change them. Users who need the routines to be fast (up to ~ 3 times
faster than the default calculations) and who can sacrifice some accuracy may
wish to increase the tolerance numbers (tolerances of 1072 lead to results that
are still typically accurate up to about four decimal places).

6 Inversion of the Number Density Integral

It is often the case that one knows the temperature and number density for a
gas of fermions or bosons and seeks the chemical potential. To do this, one must
invert the number density integral; that is, given T and n, the temperature and

number density, one must find the p//kT such that the integral of the number
density agrees with n. libstatmech does this by finding the root of the function

[=mno _n(Tvﬂl/kTaX)v (1)

where ng is the given number density, n is the result of the integration [or, more
generally, the function plus integral that gives the number density as computed
from computeQuantity()], and X represents other parameters to the number
density. The root is p//kT. To find this root, libstatmech uses the Brent solver
in GSL. Iteration proceeds until the root achieves a relative tolerance of 10712,
This tolerance is set by the parameter D_EPS_ROOT in Libstatmech.h. Our
experience is that the chosen value works well.

7 Temperature Derivatives of Thermodynamic
Quantities

Users may compute temperature derivatives of thermodynamic quantities with
the computeTemperatureDerivatives() API routines. The temperature deriva-
tives are computed with the GSL routine gsl_deriv_central. The step size for
the differentiation is a fraction 0.001 of the temperature at which the derivative
is desired. This fraction may be changed by setting D_STEP_FRACTION in
Libstatmech.h to a different value.

	Introduction
	Fermions and Bosons
	Default Integrands
	Fermions
	Bosons

	User-Supplied Functions and Integrands for Thermodynamic Quantities
	Numerical Calculation of the Integrals
	Inversion of the Number Density Integral
	Temperature Derivatives of Thermodynamic Quantities

