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This technical report describes some details of the Bose-Einstein examples
in the libstatmech distribution.

1 Bose-Einstein Condensate

At low temperature or high number density, a boson gas tends to collapse into
the lowest quantum state (ground state), which is a Bose-Einstein condensate.
To calculate thermodynamic quantities in this situation, we need to add the
ground state function to the integral and set the integral lower limit to the first
excited state energy. These examples demonstrate how to add an user-supplied
thermodynamic function and how to set a new integral lower limit.

For our system, we consider ideal bosons in a box with sides of equal length
L and volume V = L3. The single-particle states for the bosons are plane waves
with momentum ~p = 2πh̄~n/L, where ~n is a vector whose components nx, ny,
and nz are 0 or ±integers. The ground state thus has momentum zero, and we
consider the energy to be that less the rest mass energy. We may derive the
thermodynamic quantities from the grand canonical potential (see, for example,
[1])

Ω = kBT
∑

r

ln
(
1− eβ(µ′−ε′r)

)
,

where kB is Boltzmann’s constant, T is the temperature, β = 1/kBT , µ′ is the
chemical potential less the rest mass, ε′r is the energy of the single-particle state
r less the rest mass, and the sum runs over all single-particle states r. Since we
assume uniform density over volume V , the number density is given by

n = − 1
V

∂Ω
∂µ′

.

By considering all single-particle states r such that εr = 0, we thus find the
ground-state number density:

n0 =
g

V

1
exp(−α)− 1
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where g is the boson particle’s multiplicity and α = µ′/kT , which is always
negative. The entropy density is given by

s = − 1
V

∂Ω
∂T

;

hence, the ground-state entropy density is

s0 = −kB
g

V

[
ln (1− eα) +

α

e−α − 1

]
.

Finally, the pressure is
P = −Ω/V ;

hence, the ground state pressure is

P0 = −kBT

V
g ln (1− eα) .

Since the ground state single-particle energy is zero and the particles are con-
sidered to be non-interacting, the energy density of the ground state is zero.

The boson condensate examples in the libstatmech distribution include these
functions, which are then set by the API routine Libstatmech Boson updateQuantity().
Once the functions are set, they are applied during quantity calculations.

2 Integral Lower Limit

The non-condensate part of thermodynamic quantity calculations are still com-
puted with the default integrands. Since the ground state quantities are now
calculated separately, however, we need to set the integral lower limit to the
first excited state energy over kBT . We do this by considering the particle in
this state to be non-relativistic:

E1 =
p2

2m
=

h̄2(2π/λ)2

2m
=

2(h̄π)2

mV 2/3

x1 = E1/kT =
2(h̄π)2

mV 2/3kT

The new integral lower limit is set in the examples with the API routine
Libstatmech Boson updateIntegralLowerLimit().

3 Results

We may use the boson example codes in the libstatmech distribution to explore
Bose-Einstein condensation in some detail. The examples use both the ground-
state boson functions defined above and the default integrands with the lower
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integral limit x1. For example, with the function and the integral together the
number density is:

n =
g

V

1
exp(−α)− 1

+
(kT )3g

2π2(h̄c)3

∫ ∞

x1

(x + γ)
√

x2 + 2γx

exp(x− α)− 1
dx

When α (the chemical potential less rest mass over kT ) is a large negative
number, the function term is small compared to the integral and is negligible.
When α is increasing toward zero, the function term starts to dominate. At this
point almost all the particles will collapse into the ground state. This happens
at low temperatures or high number densities. Figures 1 and 2 below show
results from the distribution examples for a system volume V = 1 cm for a
boson with multiplicity g = 3 and a rest mass of mc2 = 1 MeV. Figure 1 shows
the ratio of the number of particles N0 in the ground state relative to the total
number of particles N as a function of the total number density of particles in
the box of volume V . Since the temperature and volume are fixed, it is clear
that adding particles to the system eventually causes condensation in which
most of the particles are in the ground state. The number density at which
condensation occurs increases for higher temperature because the probability to
excite a given boson to the first excited state is higher for higher T .

Figure 1: Ground state fraction vs number density at different temperatures.
N0 is the number of particles in the ground state, while N is the total particle
number.

Condensation also occurs when the temperature is lowered for fixed number
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density. Figure 2 shows this for several number densities. As the temperature
is lowered, a temperature is reached at which the fraction of particles in the
ground state rises quickly. This is the phase transition to the condensate.

Figure 2: Ground state fraction vs temperature at different number densities.
N0 is the number of particles in the ground state, while N is the total particle
number.

The critical temperature Tc at which the phase transition occurs may be
computed for non-relativistic bosons to be

Tc =
2πh̄2

mkB

(
n

gζ(3/2

)2/3

,

where ζ(3/2) is the Riemann zeta function of argument 3/2 [1]. Figure 3 shows
N0/N as a function of T/Tc as computed with a libstatmech example code. It
is clear that condensation does indeed occur at Tc. Figure 4 shows the specific
heat capacity as a function of T/Tc as computed from a libstatmech example
code with g = 3 and mc2 = 100 MeV. The cusp in the curve at T = Tc is
the signal of the phase transition. As T increases above Tc, the specific heat
capacity settles down towards 3kB/2, as expected for a non-relativistic, ideal
gas.

Figure 5 shows the pressure of an ideal boson gas with mc2 = 100 MeV and
g = 3 as a function of the number density for a fixed temperature of 100 K.
Below the condensation, the pressure is proportional to the number density, as
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Figure 3: Ground state fraction as a function of the temperature relative to the
critical temperature for an ideal boson gas with mc2 = 100 MeV and g = 3.
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Figure 4: Ground state fraction vs temperature at different number densities.
N0 is the number of particles in the ground state, while N is the total particle
number.
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expected for an ideal, non-relativistic gas. Once the number density exceeds
the critical number density, the pressure becomes constant as a function of
number density. This surprising result is due to the fact that, as the number of
particles increases towards infinity, the number of particles not in the ground
state becomes a constant. To understand this, consider a two-state system with
a probability p for a single particle not to be in the ground state. The particles
are indistinguishable; therefore, the probability to have m out of a total of N
particles not in the ground state is P (m) = Npm, where N is a normalization
constant. This means that

N
N∑

m=0

pm = 1.

If N → ∞, then N = 1 − p. The total number of particles not in the ground
state for large N is thus∑

m>0

(1− p)mpm = (1− p)p
d

dp

∑
m=0

pm = (1− p)p/(1− p)2 = p/(1− p).

This becomes a negligible fraction of N as N → ∞. Nevertheless, it is these
particles that carry the energy, pressure, and entropy; hence, these quantities
become constant as a function of the number density when the condensation
occurs.
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Figure 5: Pressure as a function of number density for an ideal gas of bosons
with mass mc2 = 100 MeV and g = 3 at T = 100 K. Once condensation occurs,
the pressure is independent of the number density.
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