
Webnucleo Technical Report: libstatmech

Tianhong Yu, Bradley S. Meyer

August 25, 2009

This technical report describes some details of calculations in the libstatmech mod-
ule.

1 Introduction
libstatmech is a library of C codes for computing the thermodynamics of fermion and
boson gases. It is built on top of libxml, the GNOME C xml toolkit. Users can create
fermions and bosons and calculate their thermodynamic quantities numerically with
either default integrands (fully relativistic, non-interacting particles) or user-supplied
ones or with user-defined functions. Users can also define their own thermodynamics
quantities as functions or integrands. A well-documented API allows users to incor-
porate libstatmech into their own codes, and examples in the libstatmech distribution
demonstrate the API.

2 Fermions and Bosons
Fermions and bosons are stored as Libstatmech Fermion and Libstatmech Boson
structures, respectively in libstatmech. To create a fermion or boson, the user must
supply the particle’s name, its rest mass in MeV, its multiplicity (usually 2J +1, where
J is the particle’s spin), and its charge (in units of the proton’s charge). When a fermion
or boson is created, it automatically has attached to it four thermodynamic quantities,
namely, the number density, the pressure, the energy density, and the entropy density.
These quantities are computed in cgs units. Once a fermion or boson is created, a
user may compute one of the four thermodynamic quantities by the API routine Lib-
statmech Fermion computeQuantity() or Libstatmech Boson computeQuantity().
These routines will compute the various quantities by numerical integration of the de-
fault integrands, which are those for fully relativistic, non-interacting particles (see §3
for the definition of these integrals). The user may also invert the number density in-
tegrand to compute the chemical potential. The four standard quantities are identified
by the strings “number density”, “pressure”, “energy density”, and “entropy”, which
may also be set by the defined parameters S NUMBER DENSITY, S PRESSURE,
S ENERGY DENSITY, and S ENTROPY DENSITY.

1



3 Default Integrands
This section presents the default integrands used in libstatmech. They are for non-
interacting, fully relativistic fermions and bosons. The key parameters are m, the par-
ticle rest mass, g, the particle multiplicity, T , the Temperature, h̄, Planck’s constant
divided by 2π, c, the speed of light in vacuum, and k, Boltzmann’s constant. We use
GSL defined values of these constants (see the GSL documentation) in all cases. We
choose the cgs system of units. The other parameters are α and γ. These are defined as
follows:

α =
µ−mc2

kT
≡ µ′

kT
,

where µ is the full chemical potential and µ′ is the chemical potential less the particle’s
rest mass energy, and

γ =
mc2

kT
.

3.1 Fermions
In deriving our integrands, we considered fermions and anti-fermions and assumed
them to be in annihilation equilibrium with the photon field. Thus, for example, we
assumed the reaction e+ + e− ⇀↽ γ + γ, where the γ represents a photon. Because the
photon has zero chemical potential, the equilibrium implies

µe+ =−µe− .

We may then write in terms of chemical potentials less the rest mass:

µ′e+ =−µ′e− −2mc2,

where m is the electron rest mass. On division by kT , this then becomes

αe+ =−αe− −2γ.

The resulting integrands are the following:

Number Density:

ne+e− =
(mc2)3g

2π2(h̄c)3γ3

Z
∞

0
(x+ γ)

√
x2 +2γx

[
1

1+ exp(x−α)
− 1

1+ exp(x+2γ+α)

]
dx

Pressure:

Pe+e− =
(mc2)4g

2π2(h̄c)3γ4

Z
∞

0
(x+γ)

√
x2 +2γx{ln(1+ exp[α− x])+ ln(1+ exp[−x−2γ−α])} dx

Energy Density:

2



εe+e− =
(mc2)4g

2π2(h̄c)3γ4

Z
∞

0
(x+γ)2

√
x2 +2γx

[
1

1+ exp(x−α)
+

1
1+ exp(x+2γ+α)

]
dx

Entropy Density:

se+e− =
k(mc2)3g

2π2(h̄c)3γ3

Z
∞

0
(x+ γ)

√
x2 +2γx

[
x−α

1+ exp(x−α)
+ ln[1+ exp(α− x)]+ ln[1+ exp(−x−2γ−α)]+

x+2γ+α

1+ exp(x+2γ+α)

]
dx

3.2 Bosons
In the absence of evidence for a conserved boson number, we neglected the anti-bosons.
The resulting integrands are the following:

Number Density:

n =
(kT )3g

2π2(h̄c)3

Z
∞

0

(x+ γ)
√

x2 +2γx
exp(x−α)−1

dx

Pressure:

P =− (kT )4g
2π2(h̄c)3

Z
∞

0
(x+ γ)

√
x2 +2γxln[1− exp(α− x)]dx

Energy Density:

ε =
(kT )4g

2π2(h̄c)3

Z
∞

0

(x+ γ)2
√

x2 +2γx
exp(x−α)−1

dx

Entropy Density:

s =− (kT )3g
2π2(h̄c)3

Z
∞

0
(x+ γ)

√
x2 +2γx

{
ln[1− exp(α− x)]+

α− x
exp(x−α)−1

}
dx

4 User-Supplied Functions and Integrands for Thermo-
dynamic Quantities

If a user wishes to use a function or an intergrand other than the default version to
compute a thermodynamic quantity, he or she must supply those. To supply a function
for a thermodynamic quantity of a fermion, the user writes a routine with the prototype

3



double
fermion_function(
Libstatmech__Fermion *p_fermion,
double d_T,
double d_mukT,
void *p_user_data

);

Here, p fermion is a pointer to a libstatmech fermion structure, d T is the temperature
in K, d mukT is the µ′/kT , the chemical potential (less the rest mass, that is, µ′ =
µ−mc2, where µ is the full chemical potential) divided by kT , where k is Boltzmann’s
constant, and p user data is a pointer to a user-defined structure carrying extra data
into the routine. The user’s routine need not be named fermion function. Analogously,
a user-supplied function for a boson thermodynamic quantity has the prototype

double
boson_function(
Libstatmech__Boson *p_boson,
double d_T,
double d_mukT,
void *p_user_data

);

For both the fermion and boson function, the user’s routine must return the thermody-
namic quantity for the input temperature, µ/kT , and other user data.

A user may also supply an integrand for a thermodynamic quantity. Here the re-
spective prototypes are

double
fermion_integrand(
Libstatmech__Fermion *p_fermion,
double d_x,
double d_T,
double d_mukT,
void *p_user_data

);

and

double
boson_integrand(
Libstatmech__Boson *p_boson,
double d_x,
double d_T,
double d_mukT,
void *p_user_data

);

4



The input parameters are the same as for the functions. The additional parameter d x
is the integration variable.

Once the user has written an appropriate function and integrand, he or she updates
them for the fermion or boson. For example, to update the pressure for a fermion
p fermion with function my pressure function and my pressure integrand, the user
calls

Libstatmech__Fermion__updateQuantity(
p_fermion,
S_PRESSURE,
(Libstatmech__Fermion__Function) my_pressure_function,
(Libstatmech__Fermion__Integrand) my_pressure_integrand

);

Now when the user calls Libstatmech Fermion computeQuantity for p fermion and
for the pressure, libstatmech will compute the pressure by first evaluating my pressure function
for the input temperature, chemical potential, and other data and will add to it the result
of the numerical integration of the integrand my pressure integrand. If either the func-
tion or integrand is set to NULL, it will not be used in the calculation of the quantity.
If the integrand is set to DEFAULT INTEGRAND, the integrand will be reset to the
default for that quantity.

The user may also define his or her own quantity (other than one of the four standard
ones). To do so, the user writes the appropriate function and integrand and then sets
the quantity for the fermion or boson with the updateQuantity() routine but with the
string giving the quantity name set appropriately. The quantity is then computed by
calling computeQuantity with that quantity name. For example, suppose we have a
fermion pointed to by p fermion. Now we write a Libstatmech Fermion Function
my enthalpy function and a Libstatmech Fermion Integrand my enthalpy integrand
that follow the appropriate prototypes. To compute the enthalpy at a temperature of 103

K and µ′/kT =−23 with no extra data, we set the quantity enthalpy and then compute
it:

Libstatmech__Fermion__updateQuantity(
p_fermion,
"enthalpy",
(Libstatmech__Fermion__Function) my_enthalpy_function,
(Libstatmech__Fermion__Integrand) my_enthalpy_integrand

);

fprintf(
stdout,
"The enthalpy density is %g (ergs/cc)\n",
Libstatmech__Fermion__computeQuantity(
p_fermion,
"enthalpy",
1000.,
-23.,

5



NULL
);

Examples in the libstatmech distribution further demonstrate how to supply user-
defined functions and integrands and how to apply them to thermodynamic quantities.

5 Numerical Calculation of the Integrals
The integration variable for quantity integrands is, in effect, the magnitude of the par-
ticle momentum converted to energy in units of kT ; thus, the full range of integration
is from zero to ∞. Users may reset the integral lower limit with the updateIntegral-
LowerLimit API routines. The integrals are computed with Gnu Scientific Library
(GSL) routines. It is efficient, when the µ′/kT > 0, to integrate from the lower limit
to µ′/kT and then from µ′/kT to ∞. The former integral is done with the GSL rou-
tine gsl integration qags while the latter is done with gsl integration qagiu. When
µ′/kT ≤ 0, the full integration is done with gsl integration qagiu.

Numerical integration of a quantity continues until the approximation to the integral
satisfies the absolute tolerance εabs and relative tolerance εrel . By default these are both
10−8 but the user may update them with the updateQuantityIntegralAccuracy() API
routines. The default values provide an excellent compromise between accuracy and
speed, and most users should probably not need to change them. Users who need
the routines to be fast (up to ∼ 3 times faster than the default calculations) and who
can sacrifice some accuracy may wish to increase the tolerance numbers (tolerances of
10−2 lead to results that are still typically accurate up to about four decimal places).

6 Inversion of the Number Density Integral
It is often the case that one knows the temperature and number density for a gas of
fermions or bosons and seeks the chemical potential. To do this, one must invert the
number density integral; that is, given T and n, the temperature and number density,
one must find the µ′/kT such that the integral of the number density agrees with n.
libstatmech does this by finding the root of the function

f = n0−n(T,µ′/kT,X), (1)

where n0 is the given number density, n is the result of the integration [or, more gen-
erally, the function plus integral that gives the number density as computed from com-
puteQuantity()], and X represents other parameters to the number density. The root is
µ′/kT . To find this root, libstatmech uses the Brent solver in GSL. Iteration proceeds
until the root achieves a relative tolerance of 10−12. This tolerance is set by the param-
eter D EPS ROOT in Libstatmech.h. Our experience is that the chosen value works
well.

6



7 Temperature Derivatives of Thermodynamic Quanti-
ties

Users may compute temperature derivatives of thermodynamic quantities with the com-
puteTemperatureDerivatives() API routines. The temperature derivatives are computed
with the GSL routine gsl deriv central. The step size for the differentiation is a frac-
tion 0.001 of the temperature at which the derivative is desired. This fraction may be
changed by setting D STEP FRACTION in Libstatmech.h to a different value.

7


	Introduction
	Fermions and Bosons
	Default Integrands
	Fermions
	Bosons

	User-Supplied Functions and Integrands for Thermodynamic Quantities
	Numerical Calculation of the Integrals
	Inversion of the Number Density Integral
	Temperature Derivatives of Thermodynamic Quantities

